Architecting Conversations at Scale
The Design and Philosophy of the IM Session Model

I -'I:j sor Mame 0
A
— Session Management Core
Network =
Infrastructure
me
i)

& NotebooklLM

The Goal: A Flawless, Synchronized
Conversation List

The primary user interface for any IM
application is the session list. The user expects
it to be:

v/ Instantly Responsive: New messages and
state changes appear immediately.

v/ Perfectly Synchronized: The list is identical
across all devices (mobile, desktop, web).

v/ Intelligently Ordered: The list is sorted in a
way that feels intuitive and useful.

The Engineering Challenge: How do we deliver
this experience reliably for a system handling
over 100 billion unique conversations?

T —

Sarah M. - 847 AM

e

Team Project - B30 AM

-y

Alex B, = Yosterday

&1 NotebookLM

Why Not Just Build the List from a Message Queue?

A common initial thought is to reconstruct the session list on the client by pulling from a user-specific
message queue (or ‘message inbox’). While simple in theory, this model fails at scale and for complex features.

Performance Bottleneck

Syncing requires pulling all incremental
messages, which is slow if a user has
many messages across few sessions. This
degrades the login/launch experience.

Incomplete State Representation

&
E‘L“Q ,g”?\d

L/:_
S e

pinned categoryld

A message stream cannot natively
represent session-level metadata. How do
you model these states with just
messages?

Model Impurity

DELETE_SESSION

-[Elé_:—)lﬂ—) —b|=p
9 \;O{ J

Forcing session state changes into the
message stream corrupts the message
model. This requires complex client logic
to filter and interpret these special ‘signal’
messages.

&1 NotebookLM

The Solution: The Session as a First-Class Entity

Instead of inferring state from a stream of messages, we model the "Session" as a distinct object.

A Session represents the complete context of a conversation for a single user.

e For a 1-on-1 chat, User A and User B each have their own separate Session object.

e For a group chat, every member has their own Session object for that group.

M1

Message Queue Model
Append, Don't Lose

e{ MQ]%

Append-only Log

M3

A Tale of Two Models

M4

Session Model
Overwrite, Don't Append

Session Object

unreadCount: 3

status: active
priority: O

Session Object

unreadCount: O
status: active
priority: O

\ Update E 7

& NotebookLM

The Architectural Blueprint: Cache-First, DB-Backed

To achieve low latency, the system is designed
around a cache-first pattern. The database serves
as the persistent source of truth, but the hot data
path is optimized through Redis.

r . q

[Client Devices]]ﬁl [AP| Gateway]]—) [Session Service]

q [Cache: Redis "zset']

M

Primary Read/Write Path, j
Session List Index ° Cache

: Hydration

— — — —>»| [Database: Sharded MySQL]

Persistent Storage, Full Dataset

The session list itself is stored as a sorted set (‘'zset’) in Redis, acting as a dynamic index. This is

the key to fast, incremental synchronization.

& NotebookLM

The Core Mechanism: Decoupling Sync Logic from Display Logic

The key to a great user experience is ensuring the session list only re-sorts when the user expects it to.
We achieve this with two distinct timestamps for every session.

activeTs (Active Timestamp) writeTs (Write Timestamp)

Purpose: Server-side synchronization. Purpose: Client-side sorting and UX.

Trigger: Updated on any change to the session Trigger: Updated only on changes that should
object. reorder the list.

Analogy: The absolute ‘last modified’ time of the Analogy: The ‘last important event’ time for the
data record. user.

Marking a session as read ! Receiving a new message

B4 Receiving a read receipt 57 Pinning a conversation

I\ Muting a session (2 Manually marking as unread

&/ *Also triggered by all writeTs events.*

The server sends all updates based on activeTs. The client uses these updates to refresh local data but

only re-sorts its list based on writeTs.
A NotebookLM

Data Flow: Hydrating the Cache and Handling Misses

Primary Data Structure:
The user’s session list is a Redis ‘zset".
e Score: ‘activeTs (the timestamp for sync)

I Hot Path (Cache Hit) e Value: Session ID
Service performs _
‘ZREVRANGEBYSCORE® Service performs

batch "MGET" for
session item data

on user's ‘zset’

Client requests
sessions > last

<P

Redis "zset’

o

Redis Key-Value

{

"activeTs’ .
Incremental changes
returned. Fast and /\ ?kaﬁgﬁs recent |
ici -10k sessions
efficient. : . MISS MISS | 1
I Hot Path (Cache Hit) | e | ey el i " Written back to
'f For inactive users, ! ' If a requested ' item cache but
...populates the cache , ‘zset” may be | | sessionitemisn'tin | notadded back
(‘zset” and items), and empty. Service loads the hot cache, it's to the "zset to
serves the request. full list fromDB... ' fetched from DB. . avoid evicting
| \/ \/ . recent items.

Database:

== —= == | e} | St | —- 1 e | = — = ==

Sharded MySQL |

. Cold Path (Cache Miss / Long-tail Sessions)

& NotebooklLM

The Session Lifecycle: Managing State Through Core Operations

All write operations on a user’s session data are protected by a distributed lock. This is critical to ensure
atomic updates to unread counts and prevent timestamp rollbacks.

Operation Key Server-Side Logic

Clear session's ‘unreadCount’.

Update total unread count.

Set readSeq to match ‘writeSeq..
Update "activeTs .

Trigger multi-device 'SyncSession’ push.

Perform a soft delete by setting an invalid status flag.
Clear unread counts.

Update "activeTs'.

Trigger "SyncSession push.

{Hard delete is supported but rare).

Session Read

O

Session Delete

= SN [N =G e

=l

Session Mute 1. Toggle ‘'muteStatus’ flag.
2. Atomically add/subtract session's unreadCount’ from total unread count.

3. Update ‘activeTs .
4. Trigger SyncSession push.

L

)

LR

Session Pin 1. Update ‘priority’ field to a higher value.
2. Update both ‘activeTs and ‘writeTs to force re-sync and re-sort to the top.

3. Trigger 'SyncSession push.

%

& NotebooklLM

A Deeper Look: The 'Set as Unread' Operation

The Challen ge Before After The Implementatinn
£ ¥ " i b 3 - i
A’Setas UIII'E:’Eld action does Server State Server State Server Action
not mean rolling back the User sets
] - l'E-HdSEQ: 10 as unread readSeq: 10 I[LII'I'E"'IEFIQEEJ:' . ThE cerver dGES not revert the
server's read state. writeSeq: 10 > [unreadStatus: true (new) ; d - g T
unreadCount: 0 writeTs: [new_timestamp] (updated) rea SE{] . Instea , 1T
The server cannot ‘un-see’ : * unreadCount: 0 o Sets a boolean flag:
messages. The user is simply ‘ ’ ‘unreadStatus = true .
creating a personal = ~ = o Updates the writeTs to the
reminder. e ' current time, forcing the
O O chat session A s | session to the top.
]_ o Updates "activeTs for
119 | O | synchronization.
O Chat Session A) =]
= : Client Interpretation
O ©)

o Sees ‘unreadStatus = true” and
displays a simple red dot (no
number).

» The updated "writeTs ensures
the session moves to the top.

Resetting the State

The "unreadStatus’ flag is automatically reset to ‘false” on the next user
action (e.g., Read, Write, Mute), returning the session to its normal state.

& NotebooklLM

Taming Complexity: Aggregation and Hierarchical Sessions

The model extends beyond a flat list using two primary aggregation concepts to create folders, service
accounts, and nested chat experiences.

Concept 1: categoryld™ Aggregation

Use Case: Grouping sessions into logical folders like “Promotions”
or “Official Accounts”.

Implementation: Sessions are assigned a ‘categoryld’. The client
Ul can then filter and group them. The server may maintain a

physical “aggregate session” to represent the folder itself.

-
0O

P -
) Session A

() Session B

" .
) SessionC

LY

-

000

— () Main Chat

e

\

Promotions
(‘categoryld=199")

Concept 2: 'subBiz' Aggregation

Use Case: More complex, multi-level nesting, such as embedding

an e-commerce store's chat list inside the main application.

Implementation: A "subBiz" session is a physical entity that acts
as a gateway. The list of sessions within this context is fetched via
a separate, asynchronous API call.

—

QOO0

e

r"'““-.l

[

{

."-I
L_ . S -
-

My Store ("subBiz’)

Async AP c[@

-~

QOO0

O Store Chat 1

() Store Chat 2

O- Store Chat 3

OF
B
Ty,

& NotebookLM

End-to-End: Multi-Device Synchronization in Action

State changes must be reflected across all of a user’s logged-in devices. This is handled by a server-initiated push
notification that prompts clients to fetch updates.

"SyncSession” Push Flow

-

Server Update: Session Service Push Trigger: Service
updates session object (clears sends "SyncSession’ State Consistency
unread, updates "activeTs’) push notification...
User Action: User A under distributed lock. - > sallol |
=) reads a message on R C) — [| —
their phone. = = = . —
> - { ...to User A's other = —
(—T devices (laptop and
D) L tﬂbIEt} } L 9 J £ y |
h Yo I:l -
Users Phone Server Client Sync: Devices receive push,
N wake up, and make an incremental o
,L request using their last "activeTs’ J |

LY

Operations that Trigger a "'SyncSession’ Push:

* Read / Clean

* Mute / Unmute
* Delete / Remove
« Set as Unread

* Pin / Unpin

“Note: New messages have their own push mechanism. SyncSession is specifically for session state changes.

& NotebooklLM

Validated at Scale: System Statistics

~100 Billion ~28TB 100/10,000

Total Sessions Database Size DB Shards / Tables
(single replica)

15 Billion 43 /7,000

E-commerce Vertical Sessions User Group Count (P99) User Group Count (P999)

&1 NotebookLM

Core Architectural Principles Summarized

1. State, Not a
Stream

—C

Treat the session context as
a first-class, overwritable
entity. This simplifies state
management and is more
robust than parsing a
message log.

2. Decouple Sync
from Sort

Use a server-centric
timestamp (activeTs’) for
data consistency and a
user-centric timestamp
(‘writeTs) for intuitive Ul
sorting. This is the key to a
non-jarring user experience.

3. Optimize for the
Common Case

S

Design for fast, incremental
syncs via a Redis 'zset index.
Full table scans and DB loads

are rare edge cases for
inactive users.

4. Guarantee
Atomicity

Use distributed locks for all
write operations to ensure
data integrity, especially for
critical data like unread
counts and sequence IDs.

& NotebooklLM

Defines the complete
state of a user's
conversational world.

The Session as a Contract

Ultimately, the Session Model is more than a data structure;
it's a contract between the client and the server.

__.} {_

—— -]

O e

Guarantees how that state

will be synchronized.

AN

__5_

|

Guarantees how that

Contract

.~ state will be synchronized.

q

S

}©
-

Provides the flexibility to build rich,

intuitive user experiences on a

foundation of scalable, consistent data.

&1 NotebookLM

