The Session Model: Architecting
Conversations at Scale

A deep dive into the design principles and architecture of
our real-time session management system.

Why a Message Queue Isn’t Enough

While a message-queue or ‘user mailbox’ model seems simple, it fails to address the
functional complexity and performance demands of a modern chat experience.

The Message Queue Model
(The Limitations)

L+ Slow User Experience: On login, the client must pull all
incremental messages and reconstruct the session list locally.
This is slow, especially with high message volume.

+ Complex Client Logic: The client becomes responsible for
calculating unread counts, sorting, and session state from a
raw message stream.

{1 State Management is Difficult: How do you handle session-level
actions like *Delete Chat,” ‘Mute,” or ‘Mark Unread’? These are
not messages. Mixing signals with messages pollutes the
model.

L} Inefficient Data Handling: Deleting a session requires complex
cleanup of messages in the server-side mailbox to prevent them
from being re-synced.

__::-_} >_}
=

—

> The Session Model
(The Advantages)

4} Blazing Fast Sync: Users sync a small, lean list of changed
sessions, not a massive queue of messages. This makes the
app feel instantly responsive on launch.

—> B Rich Functionality is Native: Session-level attributes (priority,
mute status, read state, category) are stored on the server,
simplifying client logic and enabling powerful features.

—— 1+ Declarative State: The session is a ‘record’ that gets updated
(a replicative, overwrite mechanism), not an immutable log. This
aligns with eventual consistency and simplifies state
management.

—> - Optimized Storage: The session model is far more
storage-efficient than write-diffusing every message to every
recipient’s mailbox.

& NotebooklLM

Our Session Architecture: Cache-First by Design

o 6. A "SyncSession” push is sent
to the user's other devices.

..I__.-' .."'H._ .;__. = 'H\

User's Device ~ API Layer
(Client)

e | Distributed
C | o > Lock
ﬁ | 1. A client —
operation (e.g.,
nding a message)
hits the APL.

2. A distributed lock
is acquired for the
user's sessions.

Cache (Redis)

Yy
Push Service

— Session List (zset)

‘O

Session Items (hash)

3. The system reads

from/writes to the
Redis Cache first.

Total Unread Count (int)

-

4. If there's a cache miss,
data is loaded from the
DB into the cache.

.\\\'.

Database (DB) |

5. Changes are written back
to the cache and asynchro-
nously persisted to the DB.

&1 NotebookLM

The Anatomy of a Session

' ASession is a user-specific record representing a chat’s context. For a chat between A and B, A has their own

- session object and B has theirs. They are independent.

-

Session Item

e ORIl v s stviberianivasa
D FATgetTl «-reemeisereemisersensissense
unreadCount -
readSeq / writeSeq -

(L activeTs
@ wri‘t ETS

PITOTAMYe = % e
B categoryld :eeeeeeseeeeseeens
MUEESEa Bl v hns s ie
unreadStatus oo
TELENON. e sk e

Unique identifier for the conversation.

The other user's ID or the group ID.

Number of unread messages.

The sequence IDs of the last read and last written message.

The absolute timestamp of the last modification.
Used for server-side incremental sync.

The timestamp of the last user-impacting modification.
Used for client-side sorting.

A flag indicating if the session is pinned/stickied.

Used to group sessions into folders (e.g., “Subscriptions”).
A boolean for whether the session is muted.

A flag for the "Mark as Unread” feature.

A counter to force clients to reload a session’s message list.

& NotebookLM

Caching Strategy: The Redis "zset as a High-Speed Index

Primary Mechanism b tesE
We use a Redis sorted set (zset) as the user’s 1678901234 || session_123
L - H] - ety s)
session list” index. & 1678901230 + || session_456 ZRANGEBYSCORE
: : bl = 3 :
* Keysessionilist;<userld> T 1678901220 + |[session_789
e Member: sessionId r . . .
e Score: activeTs (the timestamp of the last G A6TSI0LZ00 1 1l psceoNPAZG
modification) 1678901180 + || session_DEF
| S ————————==———==7', - .- Bounded List Cutoff (1k/10k)

The Sync & Load Process

@ @ Incremental Sync: When a client syncs, it provides the last activeTs it saw. The server performs a ZRANGEBYSCORE on the zset to
return only the sessions that have changed.

@ Bounded List: The zset is capped at the most recent 1k (social) or 10k (workplace) sessions. This is a critical performance assumption:
users rarely interact with sessions older than this. This prevents fetching massive, slow lists.

@ Cache Miss: If the sessionList cache is empty (e.g., an inactive user), we load the most recent 10k sessions from the DB into the zset.
We explicitly avoid a full DB query for users with >500k sessions, as the full-table scan and sort would be prohibitively slow, update_time,

@ Item Fetching: Individual sessionItem data is stored in separate Redis keys. If a requested item isn't in the cache (or was pushed out
of the top 10Kk), it's fetched directly from the DB.

& NotebookLM

The Two Timestamps: Sorting for Experience vs. Syncing for Consistency

Guiding Principle: The client-side session list order must prioritize the user’s sense of importance, which is not always the
same as the absolute server-side operation time.

Updates "writeTs’ Updates "activeTs’

(Changes Sort Order) (Triggers Sync) Rationale

Action

The most important event; must bring the

New Message Received session to the top.

Set Session as ‘Unread’ Explicit user action to re-surface a session.

Pin/Unpin Session Pinning is a primary organizational tool.

Sub-session update in an Aggregate folder The folder needs to reflect activity within it.

® QRN -
SRICHEHEIRS

Session state changes, but the list shouldn't re-

Entering a session / Reading messages order as you read.

Your list shouldn't jump around based on others’
actions.

®
)

Opponent reads your message

A background state change; does not warrant a

Muting / Unmuting disruptive re-sort.

Purely metadata; invisible to the user.

I

Setting custom “extra’ data

The server syncs all* changes using “activeTs . The client intelligently re-sorts its list only* when “writeTs" changes, creating a stable and
intuitive user experience.

& NotebookLM

Core Operations: The Logic of Read, Delete, and Mute
i |

@ i

Session.Read Session.Remove (Soft Delete) @ Session.Mute / Unmute

e Clears the session’s unreadCount to zero. : o Toggles the muteStatus flag on the
e Adjusts the user’s totalUnreadCount. e Sets the session status to invalid. session item.
e Updates the session’s readSeq to the e (Clears unreadCount and adjusts e On Mute: If the session had an
current writeSeq. totalUnreadCount. unread count, that amount is
e Clears any reminder flags (reminder e Sets readSeq equal to writeSeq. ~ subtracted from the user’s
data). e Updates activeTs to sync the totalUnreadCount.
e Updates activeTs to sync the change, deletion. e On Unmute: The session’s current
but not writeTs. o Aggregate Sessions: If deleting an unreadCount is added back to the
e Special Case: Handles ‘Mark as Unread’ aggregate folder, all child sessions are totalUnreadCount.
state (unreadStatus), allowing a read recursively soft-deleted first. e Updates activeTs to sync the state
operation to proceed and reset change across devices.
timestamps even if readSeq is already
current.

& NotebookLM

Beyond the List: Managing Complexity with Aggregated Sessions

The system supports grouping individual sessions into ‘folders’ or ‘aggregate entries’ to de-clutter the main list and

organize conversations. We use two primary mechanisms.

categoryld Aggregation (Logical Grouping)

Session A i [K
‘.‘ N
'h-h‘- it N
S
! e
, , ---=> | categoryld=199
Session B SessionC -~
;' 3 Items
e “
Session C

* How it Works: Sessions are assigned a numerical "categoryId’. The client Ul
can then 'fold' all sessions with a non-zero “categoryld’ (e.g.,
“categoryId=199° for 'Service Notifications') under a single virtual entry.

» Server-Side: A physical 'aggregate session’ item may exist to represent the
folder. Any update to a child session also triggers an update to the parent
aggregate session, causing it to re-sort.

» Use Cases: Muting conversations into a '"Message Box,' grouping official
accounts.

subBiz Aggregation (Hierarchical & Physical Grouping)

&)

r ———

= 2 | Child Session 1
Q)

P AR

e Lazy Load O | child Session 2
J-_‘ subBiz Gateway] ﬁ o

— ® | chi i

— ild Session 3
O

vy a

(® —

a8

Parent Cluster Child Cluster

» How it Works: A more advanced model for nesting distinct business contexts,
like e-commerce chats inside a social media app. A "subBiz’ sessionis a
physical entity that acts as a gateway to another, separate session list.

» Server-Side: The targetId’ of the aggregate session is a string representing
the “subBiz ID. This session lives in the ‘parent’ business cluster, while the
child sessions exist in a separate ‘child’ cluster.

» Performance: The child list is loaded lazily—only when the user clicks to enter
the "subBiz" aggregate session.

& NotebookLM

Ensuring Consistency Across a Distributed System

Challenge: With multiple operations (e.g., receiving a message, reading a chat) happening concurrently across
devices, how do we guarantee data integrity, especially for the "unreadCount?

Solution 1: Distributed Locks

Operation A (; >
Lock Acquired User Session
Data
Operation B I o >
Blocked -

» Scope: A distributed lock is acquired for a user's session data
before any write operation.

* Purpose: This ensures that updates to a session item and the
corresponding "totalUnreadCount’ are atomic. It prevents race
conditions where two operations could result in a final incorrect
value.

» Implementation: A standard distributed lock mechanism (e.g., via
Redis or Zookeeper) with a timeout to prevent deadlocks.

Solution 2: Proactive Multi-Device Sync (" SyncSession’)

L]

e (—N
"SyncSession’ ~/
>
State Change LR
[?) (e.g., Mute)
Server ‘SyncSession’
Push x

Trigger: Most state-changing operations trigger a lightweight push
notification to the user's other active devices.

Payload: The push doesn't contain the full session data, but is
simply a signal for the other clients to perform an incremental sync.
Operations that trigger "SyncSession " : Reading messages, Muting
or unmuting, Deleting a session, Setting a session to '‘Unread’,
Pinning or unpinning.

Note: New messages have their own push mechanism.
“SyncSession” is for state changes other than new message arrival.

& NotebooklLM

The Unread Count: More Than a Simple Sum

The Challenge: The “total unread count” displayed on the app icon is not simply SUM(unreadCount) for all sessions in the cache.

Why it's complex:

SUM()

Result:

[f__?+><+[;:_?+[j__°,

=9 .

Muted Sessions

/ (Excluded)

Our Solution: A Dedicated Counter

Mot in Cache @ '|'1 (if session is not muted/folded)

-N

>

i E‘o : New,;_—e;age

““““ Session Read

(-old_unread_count)

-N

.Y

h--‘\ {-sas:hn_unread_:mlﬂtdi \

Mute Session

Al

X+

Aggregated Sessions
(Excluded)

+N

J

-

total_unread_count:<userid>

42

"

— 42V

]

Unmute Session

(#session_unread_count)

« We maintain a separate integer in Redis: total_unread_count:<userid>.

» This counter is updated atomically (under a distributed lock) with every relevant

operation.

- New Message +1 (if session is not muted/folded)
o Session Read - (-old_unread_count)

o Mute Session — (-session_unread_count)

o Unmute Session + (+session_unread_count)

« **Handling Old Sessions**; When an old session is loaded from the DB into the
cache, its unread count is incorporated into the total during the next write operation.
This ensures eventual consistency.

The total unread count is always available as a fast, single key lookup, without requiring a costly aggregation query.

&1 NotebookLM

Architecture in Action: A New Message Arrives

Sandar Server Server Receiver's | Receiver's Receiver's |
(Message Service) (Session Service) Cache DB Primary Device |
Send Message
Persist Message i
! : "u
i i Push New Message (Payload) i _
' : . ; Receives push,
Trigger Session Upclate' _ :l updates U
T_| Acquire Lock "lock:<receiverld> Instantly
Load Session Item % i
i) Increment “unreadCount’
| Update “activeTs" & “writeTs'
' *_ Increment "totalUnreadCount”

Write Session Item & Update "zset’ Scuri
i Async Persist T

b
:’ Release Lock I—l

The session update does NOT trigger a separate "SyncSession’ push. The new message push is sufficient for other active

devices to update their local session state. Inactive devices will get the change on their next incremental sync.
A NotebookLM

Engineered to Operate at Internet Scale

Total Sessions (Private Chat)

Per-Table Scale (Private Chat)

Group Chat Statistics

-—

~1 Trillion

total sessions

100
Shards

10,000

Tables
28 TB

Storage (Single Replica)

11 Million

records per table
(avg)

5 members

® ® (average)

oQOo 76 members

2.8 GB ®"‘?"“\ (P99)
size per table ® 500
(2 GB data, members
800 MB index) (P999)

Total Sessions (E-commerce Chat) User Group Count

ey

~15
Billion

total sessions

2 groups
(P50)

7,000 groups

,
@ Lél'i_gg}grmups

(P999)

&1 NotebookLM

Our Core Architectural Decisions & Trade-offs

This system’s performance and scalability are the result of conscious design choices
that balance user experience, consistency, and operational cost.

Decision 1: Prioritize User-
Perceived Latency.

-E

We Chose: A cache-first model with a
bounded list (top 10k sessions).

Instead Of: Querying the full session list
from the database on every load.

The Result: Near-instant app launch and
session list display, at the cost of needing
to lazy-load very old sessions on
demand.

Decision 2: Separate UX Sorting
from Data Syncing.

O—E
C—O

We Chose: Two distinct timestamps
(“writeTs" for client sorting, "activeTs’
for server sync).

Instead Of: Using a single timestamp for
everything.

The Result: A stable, non-jarring UI where
the session list only reorders for important
events, while ensuring all data changes
are still synced reliably across devices.

Decision 3: A Declarative Session
Model over an Event Stream.

:I/j -FEEE»

We Chose: A model where session state
is overwritten (replicative).

Instead Of: A pure message queue
where clients must derive state.

The Result: Dramatically simpler client
logic, richer server-side features, and a
more efficient storage footprint.

& NotebooklLM

The Session Model: A Resilient Foundation for Communication

The session management system is more than just a backend component. It is a carefully
architected foundation designed for three key outcomes:

'9‘ 1. Performance: To deliver an immediate and
N7 fluid user experience, even with massive data
loads.

Performance
2. Scalability: To handle trillions of
O conversations and petabytes of data reliably
o€o and cost-effectively.
O 3. Flexibility: To provide a rich data model that
Scalability supports a growing ecosystem of features,
\ from simple pinning and muting to complex,
o i hierarchical conversation spaces.
Flexibility

By treating the session as a first-class citizen, we have built a system that is not only
technically robust but also fundamentally aligned with the user’s conversational journey.

& NotebooklLM

